
대규모 언어 모델의 효율적인 서빙을 위해서는 메모리 관리와 병렬 처리 같은 최적화 기술이 필수적입니다. LLM 서빙이란 동일한 연산을 수행하면서도 성능 하락 없이 추론 능력을 향상시키는 방안을 통해 모델 서빙을 수행하는 것을 말합니다. 다양한 프레임워크들이 개발되었지만, 현재 가장 널리 사용되고 자주 언급되는 vLLM과 SGLang에 대해 간단히 설명하고 비교해보는 시간을 가지겠습니다. 1. vLLMvLLM은 LLM 추론 및 제공을 위한 빠르고 사용하기 쉬운 라이브러리입니다. UC 버클리의 스카이 컴퓨팅 랩에서 개발되었으며, 학계와 산업계의 기여를 통해 커뮤니티 중심 프로젝트로 발전했습니다. 주요 기능1) 고성능 서빙PagedAttention 기술을 사용한 메모리 관리와 처리 성능 극대화대기중인 요청 ..